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Abstract - Parallel algorithms of the hypercube allo- 
cation strategies are considered in this paper. Although 
the sequential algorithms of various hypercube alloca- 
tion strategies are easier to implement, their worst 
case time complexities exponentially increase as the 
dimension of the hypercube increases. We show that 
the free processors can be utilized t o  perform the allo- 
cation jobs in parallel to improve the. eficiency of the 
hypercube allocation algorithms. A modified parallel 
algorithm for the single GC strategy is proposed and 
is shown to be able to recognize more subcubes than the 
single GC strategy by using the binary reflected Gray 
code and inverse binary reflected Gray code, without 
increasing the execution time. Two algorithms for  a 
complete subcube recognition system are also presented 
and shown t o  be more efficient and attractive than the 
sequential one currently used in the hypercube multi- 
processor. 

1 Introduction 
The hypercube structure has become a widely used 

architecture in the design of distributed-memory mul- 
tiprocessor system. Its popularity stems from the 
compactness of the nodes in the system which results 
in a logarithmically-growing diameter and degree of 
the processor nodes. A hypercube with 2" processors 
can be topologically represented as an n-dimensional 
cube in which a processor is located on each one of the 
2" vertices of the cube. Each of the 2" processors is 
addressed by a distinct n-bit vector and two processors 
are connected by a link if and only if their addresses 
differ in exactly one bit. Subcubes of an n-cube system 
are denoted by ternary strings in (0, 1,  *}, where * is 
the Don't Care bits which can be replaced by either 
0's or 1's. For example, O*O* is a subcube in a 4-cube 
system which contains 4 processors with addresses 0, 
1, 4, and 5. 

Numerous research efforts on the performance eval- 
uation, fault tolerance, and embedclability of hyper- 
cubes [l, 21 have been reported. Several commercial 
hypercube multiprocessors have been built, such as In- 
tel iPSC [3], and nCUBE[4]. When a task or an appli- 
cation program arrives at a hypercube multiprocessor, 
the required number of processors is assigned to the 
task by the host processor. Upon the completion of 
the task, the processors used by the task are released 
or deallocated. The processor allocation involves two 
steps. The first step is to determine the number of pro- 
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cessors that should be allocated for executing an in- 
coming task. It is assumed that a complete subcube is 
required by the incoming task. Otherwise, a subcube 
of dimension d is allocated, where 2d-1 < p 5 2d and 
p is the number of requested processors. The second 
step in the processor allocation is to locate an appro- 
priate subcube and assign it to the incoming task such 
that the system utilization is maximized and the sys- 
tem fragmentation is minimized. As a result, the de- 
lay for an incoming task to be scheduled is minimized. 
In short, a good allocation scheme keeps the dimen- 
sion of the free subcubes as large as possible while the 
processors are allocated and deallocated. The current 
hypercube multiprocessors allocate tasks based on a 
simple buddy strategy, as explained later [3, 41. 

A few subcube allocation policies have been pro- 
posed in the literature. These policies concentrate on 
developing a method or a data structure that helps the 
allocation procedure to  quickly find a first-fit avail- 
able subcube of the requested size and assign it to 
the request. The performance metrics used in com- 
parisons of different allocation algorithms are usually 
the number of recognizable subcubes and allocation 
time efficiency. The number of recognizable subcubes 
is closely related to the processor utilizations. One 
category of the allocation policies, called bit-mapping 
schemes, uses tree structures to facilitate the proces- 
sor allocation. Buddy, gray code(GC) and multiple- 
GC [5], modified buddy [6], and tree collapsing(TC) [7] 
strategies belong to this category. Another category of 
the allocation policies, called list schemes, maintains 
n+l lists in which the ith list contains the available 
i-dimensional subcubes. The elements in the lists are 
mutually disjoint. Free list strategy[8] and maximal 
set of subcubes(MSS)[S] are in this category. There 
are also many other variations of the allocation poli- 
cies that use graphs to quickly find out the available 
subcubes. The examples of them are the MSS-based 
algorithm using consensus graphs in [9] and the prime 
cube-based algorithm using prime cube(PC) graphs in 
[lo]. Another approach is the weight allocation strat- 
egy(WAS) [ll] which uses the weights of the proces- 
sors to select the best subcube in order to reduce the 
fragmentation of the processors. The weight of a pro- 
cessor is defined as the number of its neighbors which 
are busy. 

In the sequential approach, the host processor is 
responsible for all the computations of the availabil- 
ity of subcubes. Since the time complexities of the 
proposed approaches are high, these papers [5, 7, 81 
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briefly discuss about the parallel implementation of 
their strategies. One parallel approach commonly em- 
ployed in [5, 7, 81 is to distribute the computations 
to some predetermined processors. The results from 
these predetermined processors are then collected by 
the host processor to  make the final decision. In [5], 
the number of predetermined processors used by the 
multiple-GC strategy for a complete subcube recogni- 
tion is C:+. The T C  strategy in [7] uses C: proces- 
sors to achieve the complete subcube recognition when 
a subcube of size d is requested. The free list strategy 
employs n + 1 processors, each of which maintains the 
list of one dimension. Two drawbacks of these paral- 
lel algorithms are as follows. First, if the processors 
are initially selected and dedicated solely to executing 
the allocation program, then the number of processors 
available for executing the incoming tasks is reduced, 
leading to degraded system performance. The second 
drawback is that the worse case time complexity is 
still of the order of 2'g which exponentially increases 
as the dimension of the system increases. 

Another parallel approach used in [12] utilizes the 
free processors to perform the allocation jobs. Only 
tree type allocation strategies were considered. We 
adopt a similar approach but parallelize all the exist- 
ing hypercube allocation strategies. Also the worst 
case time complexity of our best parallel algorithm is 

which is much better than C j  x d obtained 
in [12]. We intend to distribute the computations exe- 
cuted on the host processor in the sequential approach 
to the free processors by keeping the free processors 
busy and responsible all the time. This approach keeps 
the system more utilized, improves the execution time 
of the allocation and reduces the waiting time of the 
incoming tasks. 

In this paper, we first parallelize the buddy, single 
GC, multiple-GC, and T C  strategies. A modified par- 
allel algorithm for the single GC strategy is proposed 
and is shown to  be able to recognize more subcubes 
than the single GC strategy by using the binary re- 
flected Gray code and inverse binary reflected Gray 
code, without increasing the execution time. Two al- 
gorithms of a complete subcube recognition system 
are also presented and shown to be more efficient and 
attractive than the sequential one currently used in 
the hypercube multiprocessor. The rest of the paper 
is organized as follows. The parallel algorithms of the 
buddy and GC strategies are given in Section 2 and 3, 
respectively. Efficient algorithms of the complete sub- 
cube recognition system are present.ed in section 4. 
A selection algorithm suited for the best-fit strategy 
such as WAS is given in section 5. Finally, concluding 
remarks are presented in Section 6. 

2 The Buddy Strategy 
The buddy strategy is originated from the mem- 

ory allocation scheme. This is the simplest among all 
the strategies and is applied to commercial multipro- 
cessors, such as nCUBE[4]. It has been shown that 
the buddy strategy is statically optimal if the release 
of processors is not considered. In other words, the 
buddy strategy fails to grant a request only if there is 

no sufficient number of available processors to satisfy 
the request. However, the buddy strategy is no longer 
optimal if the release of the processors is considered 
when a request is completed. 

This strategy is easily explained by a binary tree in 
which the leaf nodes are labeled as 0 to 2fl-1 from the 
left to the right. The labels of the leaf nodes repre- 
sent the addresses of processors in the system. In the 
sequential algorithm, when a d-cube is requested the 
system checks the availability of the processors corre- 
sponding to the leaf nodes of the subtrees rooted at 
the (n - d)th level of the binary tree. Formally, the 
system checks the availability of 2d processors whose 
addresses range from 2d x i to 2d x (i + 1) - 1, where 
i = 0 to 2fl-d - 1. I t  can be easily observed that the 
number of d-cubes recognized by the buddy strategy 
is n-d 

%'arallel A1 orithm of the Buddy Strategy 
To parallelize h e  buddy strategy, we use the the 
same divide-and-conquer technique usually used in the 
tree structure. Each available rocessor with address 
an-l..uO has local variables RJSULT and ACK and 
executes the following algorithm when a d-cube is re- 
quested. 

1 ACK = 0 ,  RESULT = 1 
2 for i = 0 to d - 1 in parallel do 
3 

4 receive ACK 
5 else ACK = 0 
6 
7 

8 
9 end for 
10if RESULT is 1 then send an-1 .. ad** ...* to 

if a; is 0 and processor u,-l..a~+llO..O 
is available then 

if ACK is 0 then RESULT = 0 
if ai is 1 and processor a,-l..aj+100..0 

is available then 
send RESULT to processor an-l..uj+lOO..O 

the host processor 

Having developed the above algorithm, we propose be- 
low a way by which the parallel algorithm can be im- 
plemented. The executable image of the subprogram 
of the parallel algorithm must be preloaded at each 
processor's memory. As a task arrives, the associ- 
ated information such as the requested subcube size 
d is loaded to each processor, from the host proces- 
sor. This loading process can be done in a constant 
time since the host processor is connected to every 
processor in the system as implemented in nCUBE 
multiprocessor [4]. Then the parallel algorithm is ex- 
ecuted. 

At the end of algorithm, the processors 
an-l..adOO..O with a value 1 in variable ACE( discov- 
ers a free d-cube an-1 ..ad**...* and sends the address 
of the d-cube to the host processor. The host proces- 
sor then selects the first d-cube it receives, assigns the 
d-cube to the incoming task and disregards the other 
d-cubes arriving at the host processor. Obviously, this 
algorithm takes d time units, each of which is the time 
processors take for sending and receiving results from 
other processors. The sequential buddy strategy takes 
U(2") time units for the worst case. 

Notice that the loading process described here are 
applicable to all the parallel algorithms given in this 

106 



paper. The subcube selection method adopted by the 
host processor is only applicable to the first-fit ap- 
proaches such as the buddy and GC strategies. For 
the best-fit approach a different selection method is 
needed qs described later for the WAS. 
Extension of the buddy strategy 
The tree collapsing(TC) strategy [7] is an extension 
of the buddy strategy that has a complete subcube 
recognition ability. The T C  strategy tries to find 
a subcube according to the buddy strategy. If un- 
successful, it  will generate another binary tree with 
different labeling which can be generated by the col- 
lapsing tree generation method developed in [7]. Ba- 
sically, each binary tree contains 2n-d d-cubes each 
of which has d *'s at d fixed bit positions and 
0's or 1's at the other n - d bit positions in its 
ternary representation. For example, O*O*, 0*1*, 
1*0*, and 1*1* are the 2-cubes recognized by the 
T C  strategy based on the binary tree labeled with 
(0,1,4,5,2,3,6,7,8,9,12,13,10,11,14,15). Hence, at most 
C: binary trees are needed to allocate a d-cube. As 
stated in the introduction, the distributed algorithm 
developed for T C  strategy in [7] uses C: processors, 
each of which computes the availability of subcubes 
recognized by its corresponding binary tree. Each in- 
volved processor sends the result back to the host pro- 
cessor, indicating whether a subcube of the requested 
size is available. The worst case time complexity is 

To make the T C  strategy more efficient, we paral- 
lelize the T C  strategy by using the parallel algorithm 
of the buddy strategy C; times with C f  binary trees. 
Thus the time complexity of the parallel algorithm of 
the T C  strategy becomes O(d x Cf) which is polyno- 
mial and more efficient than the distributed algorithm 
developed in [7]. 

3 The Gray Code Strategy 
The single GC strategy [5] is similar to the buddy 

strategy except for the labeling of the leaf nodes. The 
leaf nodes are labeled by a sequence of binary num- 
bers where any two consecutive numbers have only one 
different bit out of the n bits, based on the binary re- 
flected Gray Code(BRGC). Let gn denote the binary 
reflected Gray Code mapped from (0, .., 2"-1) to n-bit 
binary strings and Gn = {gn(O), .., gn(2" - 1)). The 
subscript n will be omitted later if there is no ambigu- 
ity. The leaf nodes are labeled as gn(0) to  gn(2" - 1) 
from the left to the right. G, is obtained by the fol- 
lowing recursive expression with parameters {PI,  pa, 
.. Pn 1, 

O(2"). 

GI = {0,1}  
Gn = {Gipi,(G$-1)1'rk},2 5 IC 5 n. (1) 

Here ?-k is the partial rank of pk in {PI, pz, .. pk 
}. G;? is the set of k-bit binary strings which are 
constructed by inserting a bit with value (0 or 1) into 
the position between Tkth bit and (?-k - l) lh bit of the 
elements in Gk-1, assuming there exist two dummy 

IRBOC 40) qz) 4Q @l qio) pia 1114) 
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Figure 1: The allocation process of the modified single 
GC strategy in a 4-cube system. 

bits, rkth and Oth  bits. G$-l is the sequence of binary 
strings obtained by reversing the order of the strings 
in Gk-1. The standard GC is the Gn with parameters 
(1, 2, .., n}. An example of the standard BRGC Gq 
of a 4-cube system is shown in Fig.1. 

The sequential allocation algorithm of the single 
GC strategy for allocating a d-cube is to check the 
availability of 2d processors rooted at two consecu- 
tive nodes of the (n -d)th level of the GC binary 
tree. Formally, the system checks the availability of 
2d processors whose addresses range from 2d-1 x i 
to (adb1 x (i + 2) - 1) mod 2d-1, where i = 0 to 
2n-d-1 - 1. It can also be easily observed that the 
number of the recognizable subcubes is double com- 
pared to the buddy strategy. The time complexity of 
the single GC strategy, however is O(2"). Our par- 
allel version of the single GC strategy spends exactly 
the same time, d time units, as the buddy strategy to 
compute the availability of every subcube recognized 
by the single GC strategy. The algorithm is illustrated 

f%%~sAl orithm of the Single GC Strategy 
G = {g(O), g??, .., g(2" - 1) } Each available proces- 
sor Pa with a dress Q = an-l..ao has local variables 
RESULT and ACK and executes the following algo- 
rithm when a d-cube is requested. 
1 ACK = 0, RESULT = 1 
2 for i = 0 to d - 1 in parallel do 
3 k = g((g- ' (cr)  + 2') mod 2") 
4 1 = g((g-'(cr) - Zi) mod 2") 
5 if Pi is available then 
6 send RESULT to Pi 
7 if P k  is available then 
8 receive ACK 
9 else ACK = 0 
10 if ACK is 0 then RESULT = 0 
11 End for 
12 if RESULT is 1 then send the found d-cube 

described in the text to the host processor 

At the end of the parallel single GC algorithm, the 
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processor g - ' ( a )  = bn-1..bd-100..0 with a value 1 
in variable RESULT discovers a free d-cube of 2d 
processors whose addresses range from g(2d-' x i) to 
g((2d-1  x ( i+2)-1)  mod 2d- ' ) ,  where i = b,,-l..bd-l. 
The Modified Single GC Strategy 

While developing the parallel a1 orithms for the 
buddy and single GC strategies, we &cover that not 
all the processors are responsible for the processor al- 
location all the time. For example, after the first iter- 
ation of the algorithm, at most one half of the proces- 
sors labeled with g ( i ) ,  where i is odd, will become idle 
since they do not send results to or receive results from 
other processors. Therefore we develop a modified al- 
gorithm for the single GC strategy to be able to  rec- 
ognize more subcubes than the single GC strategy by 
keeping all the available processors busy and respon- 
sible for the processor allocation all the time. In addi- 
tion to the binary reflected Gray code(BRGC) G, = 
{g(O) ,  g ( l ) ,  .., g(2" - 1) }, we also map the processors 
with the inverse binary reflected Gray code(1BRGC) 
F,, = {f(O), f ( l ) ,  .., f ( 2 ,  - 1 )  }. IBRGC F,, listed 
below is obtained from a similar recursive expression 
as BRGC with an inverse parameters set { p , ,  .., p l } .  

where the definitions of Tk and F *  are the same as 
BRGC. An example of the standard IBRGC F4 of a 
4-cube system is shown in Fig.1. 

Notice that if a processor Q has an even value of 
g - l ( a )  then it will have an odd value of f - l ( a )  and 
vice versa. In the first step of the parallel algorithm of 
the modified single GC strategy, processors g ( z )  and 
f(y) send results to processors g ( z  - 1) and f (y  - l ) ,  
respectively, if z and y are odd. Processor g ( z )  and 
f(y) expect to  receive results from processors g ( z  + 1) 
and f (y+ l ) ,  respectively if t and y are even. Thus we 
can easily divide the processors into two sets of pro- 

f ( 2 " - l )  }. After the first step of the algorithm, these 
two sets of processors perform the processor allocation 
independently. In the following iterations, each pro- 
cessor sends result to its child processor and receives 
result from its parent processor in a similar way. 

The relationship of the processors is shown in Fig.2 
in which four processors are related and the child pro- 
cessors are pointed to by directed arrows from their 
parent processors and vice versa. The variable D of 
a free processor, shown in Fig.1, is the dimension in- 
dex which is the index of the leftmost Don't Care bit 
in the ternary representation of the subcube plus one 
and is used to compute the addresses of its parent and 
the child processors. To be more clear, Fig.1 shows 
that processors g(O),  g ( 2 ) ,  g ( 4 ) ,  and g ( 6 )  are related 
to each other since D is 1 at the end of the first iter- 
ation of the parallel algorithm. Processor g ( 0 )  is the 
parent of the processor g ( 6 )  and therefore will send 
a result to  the processor g ( 6 ) .  Processor g ( 0 )  is the 
child of the processor g ( 2 )  and will expect to receive 
a result from processor g ( 2 ) .  

cessors, {g(O),  9 ( 2 ) ,  ..> 9(2"- l> 1 and {f(O>, f ( %  .., 

f 1 

Figure 2: The child and parent relationship of the 
processors. 

oooo*  * o o o o  O * * * *  * * * * o  

0 0 0 * *  * * o o o  * O * * *  * * * o *  

o o * o *  * o * o o  * * O * *  

o o * * *  * * * o o  * * * O *  

* o * o *  
Figure 3: The subcubes of a 5-cube system recognized 
by the modified single GC strategy. 

Fig.3 shows the subcubes that can be recognized by 
the parallel algorithm of the modified single GC strat- 
egy in a 5-cube system. For the processors labeled 
with RBGC, we can observe that the subcubes recog- 
nized by the parallel algorithm of the modified single 
GC strategy are constructed from the 1-cubes each 
of whose ternary representations has a Don't-Care bit 
at the Ot" bit position. The 2-cubes recognized by 
the algorithm are constructed by assigning the 1'' bit 
with * and also assigning 3rd bit with *. In general, 
the d-cubes are based on the ( d  - 1)-cubes and are 
constructed by assigning the bit next to the leftmost 
Don't Care bit of the ternary representation of the (d- 
1)-cubes to * and also assigning the bit which is two 
bits away from the leftmost Don't Care bit to *. 

The parallel algorithm is shown in the Appendix. 
The variable C u b e  in the algorithm shown in the Ap- 
pendix stores the subcube discovered at the current 
iteration. The variable D is an index of the left- 
most(rightmost) Don't Care bit in variable C u b e  plus 
1 for BRGC(1BRGC). At the end of the algorithm, the 
processor with value 1 in variable RESULT discovers 
a free subcube stored in variable C u b e .  It can be easily 
observed that the modified single GC strategy takes 
exactly the same time, d time units, as the buddy and 
the single GC strategy, but recognizes more subcubes. 
Table 1 shows the number of subcubes that an n-cube 
system has and the number of the subcubes that can 
be recognized by the parallel algorithms of the com- 
plete recognition approaches, modified GC strategy, 
and single GC strategy. 
Multiple GC strategy 
In the multiple-GC strategy, Cr,,, gray codes are used 
for a complete subcube recognition [5]. For each in- 
coming task with requested size d ,  the system follows 
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1 n x 2 " - l  2" 2" 
0 2" 2" 2" 

Table 1: Numbers of the subcubes recognized by 
a complete recognition(CR) system, the single GC 
S GC)strategy and the modified single GC (MS I C)strategy. 

the allocation procedure of the single GC strategy to 
find the first available d-cube based on the binary tree 
with one gray code. If there is no free d-cube in the 
tree, then the second binary tree is generated with an- 
other gray code and the search is continued until an 
available d-cube is found or all the Ci+, gray codes are 
exploited. Therefore, we can have a parallel algorithm 
for the multiple G C  strategy with a time complexity 
of O(d x Cy2,) by using the same technique as the 
parallel algorithm of the TC strategy. Notice that al- 
though the number of the subcubes recognized by the 
single GC strategy is double that of the buddy strat- 
egy, the time complexity of the multiple GC strategy 
is worse than the T C  strategy. The reason is that 
the subcubes checked in one GC may be redundantly 
checked in another GC of the multiple GC strategy. 

4 Complete Subcube Recognition 
In order to achieve a complete subcube recognition, 

a processor allocation algorithm must have the ability 
to  check all the possible subcubes in the system. There 
are C: x 2"-d d-cubes in an n-cube system. Thus a 
sequential algorithm with the complete subcube recog- 
nition ability proceeds by checking the availability of 
each of the 2" processors in each of the C: x 2n-d 
d-cubes, which gives us a O(C: x 2")  time complex- 
ity. In order to  improve the efficiency of the allocation 
algorithm, we can have a parallel algorithm with time 
complexity O(C: x d) that achieves a complete sub- 
cube recognition by employing the buddy strategy C; 
times with C: different buddy trees, i.e. the parallel 
algorithm of the T C  strategy. 

In the following we present two parallel algorithms 
that achieve a complete subcube recognition and are 
more efficient than the parallel T C  algorithm. The 
basic idea is to  uniformly distribute the computations 
that are supposed to be executed in the host processor 
in the sequential algorithm to all the free processors. 
The algorithms involve two phases. The first phase, 
the subcube assignment phase, assigns the subcubes 
to their corresponding leader processors. The leader 
of a subcube is one of the processors in the subcube 
determined by the subcube assignment scheme. As 
we know, there are C: x 2"-d d-cubes in an n-cube 

system, the subcube assignment scheme can distribute 
the C; x 2"-d d-cubes uniformly to the 2" processors 
in the system. Thus the number of the d-cubes pro- 
cessed in a processor is less than or equal to Tc' t,n-dl 
= @I. Notice that, according to the definition of the 
leader of a subcube, if the leader is busy then the sub- 
cube must not be available. Thus only the subcubes 
that are computed by the free processors need to  be 
considered in the processor allocation procedure. The 
subcube assignment scheme is given as follows. 

1.  Initialize the variable counter[a] to  0 for each pro- 
cessor cr. 

2.  For a processor with address a = (an-1, . . ., ao), 
generate can d-cubes, ( O n - 1 ,  . . ., z d - 1 ,  . . ., 20, 

. .., ao) that contain processor a, where zi are 
DON'T CARE symbols, and 0 5 i < d. Sort 
these C: d-cubes by their index of zi. 

3. For the kth d-cube in the sorted sequence of the 
C: d-cubes, where k is from 0 to C: - 1 and y = k 
mod 2d = (yd-1, . . ., yo), zi with yi, 0 5 i 5 d - 1 ,  
and calculate p = ( U " - 1 ,  . . ., yd-1, . . ., yo, . . ., 
.O> . 

4. If the counterp] is not larger than [%I, then its- 
sign the d-cube, ( ~ ~ - 1 ,  . . ., 2 d - 1 ,  . . ., 20, . . ., ao), 
to the processor p. Compute the complementary 
d-cube by complementing all the bits of (~"-1, 
. . ., xd-1, . . ., 20, . . ., ao) except DON'T CARE 
bits, and assign this complementary d-cube to 
processor Ti = (=,= ,..., q,Q. 

5 .  else, set k = k + 1, and y = k mod 2d = (Yd-1, 
. . ., yo) and Calculate (an-1, . . ., yd-1 ,  . . ., yo, . . ., 
0 0 ) .  

6. Goto step 3 until all the C; x 2"-d d-cubes are 

Notice that the subcube assignments according to 
the above scheme can be determined off-line. and in- 
corporated in the processor allocation algorithm for 
each free processor. The entire program consists of 
the host and free processor subprograms. Whenever 
a subcube is requested, the host processor decides the 
cube size, i.e. d, and loads the free processors with 
d. The subprogram in each free processor then follows 
the same procedure as the sequential algorithm and 
finds a free d-cube. After the subprogram is finished 
on each free processor, the result is sent to the host 
processor. Then the host processor picks the first re- 
sult(a free subcube) it receives and allocates it to the 
incoming task, and disregards the other results arriv- 
ing at the host processor. Therefore, this gives us a 
time complexity of O( x z d )  N O(C;) which is 
better than the parallel T C  algorithm developed in 
secti-on 2. 

Since the above algorithm involves a lot of redun- 
dant computations among the free processors, we can 

assigned to a processor. 
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Figure 4: An example of modified single GC strategy 
in a Ccube system. 

use the divide-and-conquer technique to further im- 
prove the efficiency. This can be accomplished by us- 
ing the partial results of lower dimension subcubes to 
compute the availability of the higher dimension sub- 
cubes. The first phase is the same as the above algo- 
rithm. In the second phase, we use the subcube tree 
to facilitate the development of the parallel algorithm. 
Fig.4 shows the subcube tree of a 4-cube system for 
allocating a 3-cube. Each k-cube (1 <_ k 5 d )  that 
need to be computed is decomposed into two (k - 1)- 
cubes at  the position of the leftmost Don't Care bit 
of its ternary representation. For example, the 3-cube 
O*** is decomposed into two 2-cubes, OO** and 01** 
in the subcube tree shown in Fig.4. From the de- 
composition procedure, CzIi x 2n-d+k ( d  - k)-cubes 
need to be computed, where 1 5 k 5 d. Each k-cube 
receives two results of (k - 1)-cubes from its child pro- 
cessors in the subcube tree. Since a leader processor 
is responsible for a t  most r+l d-cubes, the time com- 
plexity of the parallel algorithm is easily obtained to 

In the above complexity analysis, we assume that 
the time for passing results between processors is in- 
dependent of the distance between processors. It is 
always true in the modern hypercube multiprocessors 
such as nCUBE because of the wormhole routing tech- 
nique [4]. We also ignore the message contention in 
the system since the messages passed for the alloca- 
tion jobs are small and are less likely to  interfere with 
the messages passed in the subcubes that have already 
been allocated. 

C" 

be 2 x xt=l = o(c;=~ @I). 

5 The Best-Fit Strategies 
As we should see, the main tasks of the parallel hy- 

percubes allocation algorithms developed in previous 
sections are as follows. Each free processor searches for 
an available subcube of the requested size among some 
predetermined subcubes and sends the found subcube 
to  the host processor. Then the host processor se- 
lects the first subcube it receives and assigns the sub- 
cube to  the incoming task. Basically, these algorithms 

are first-fit approaches. In this section, we extend 
the technique used in previous sections to  the best fit 
approach, the weight allocation strategy(WAS) [ll]. 
Each free processor finds the best subcube among the 
predetermined d-cubes using WAS. Then the 
global best d-cube is selected by the selection proce- 
dure which will be described later. We do not attempt 
to parallelize the other best fit approaches such as the 
list type strategies, the MSS-based [9] and free list [SI 
strategies since the list structure is not easy to par- 
allelize. In the following, we first briefly describe the 
WAS and then develop an efficient method to select 
the best cube for ,allocation. 
Weight Allocation Strategy 

WAS is a hypercube allocation strategy developed 
in [ll] that is based on the weight sums of the sub- 
cubes in the system. The weight of a free processor is 
the number of its neighbors that are already allocated 
to tasks. The weight sum of a free subcube is defined 
as the sum of the weights of the processors in the sub- 
cube. WAS selects a free subcube whose weight sum 
is maximal among all the available subcubes of the 
requested size. The sequential algorithm of the WAS, 
executed on the host processor, is given as follows. 

1. Set d = IIjl, where IIj (  is the dimension of the 
subcube requested by an incoming task,  I j .  

2. Compute the weight of each free processor. 

3. Determine the availability of a d-cube by using its 

4. If there are available d-cubes, compute the weight 

(a) If there is an available d-cube whose weight 

(b) Find the d-cube whose weight sum is maxi- 

i. If weight sums of two d-cubes, A and B, 
are equal, compute weight vectors, a' = 
(U,, ..., UO) and b' = (b , ,  ..., bo) for A 
and B, where ai and bi are number of 
processors wh_ose weight is i, and 0 <_ 
i < n. If a' > b ,  select B. If a' < a', select 
A: 

ii. If a' = b ,  compute the sum wa of weights 
of free processors after temporarily set- 
ting the corresponding track bits of A to 
ones. Similarly compute wb. If wa < wb, 
then select A. Else, if W a  > wb select B. 

iii. If Wa = tub, compute a weight cardinal- 
ity vector (c,,, ..., CO) after temporar- 
ily setting the corresponding track bits 
of A to ones, where ci is the number 
of free processors whose weights are i .  
Similarly, compute the weight cardinal- 
ity vector (&, ..., do) for B. If (&, ..., 
dq) < (c,,, ..., CO) then select B, other- 
wise select A. 

corresponding track bits. 

sums of all the available d-cubes. 

sum is (n - d )  x 2d then select it and quit. 

mum among the available d-cubes. 

* 
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5. Set the track bits corresponding to the selected 
d-cube in step 3 to 1’s and assign the d-cube to 
Ij . 

6. If there is no available d-cube, put the task Ij to 

Step 4 is the major part of the allocation algorithm. 
It first computes the weight sums of all the available 
d-cubes. Then it selects the d-cube which has the max- 
imum value of weight sum among all the available d- 
cubes. Since it is possible that there are more than 
one d-cubes with the same weight sum which is maxi- 
mum, further comparisons are performed as stated in 
step 4(b). However, according to the computer sim- 
ulation in [ll], these cases are rare. The step 4(a) 
is a special case of the algorithm. It finds a d-cube 
with weight sum (n - d) x 2d which is maximal weight 
sum in any situation. In other words, no other d-cube 
can have weight sum greater than (n - d) x 2d. Thus 
it is not necessary to continue the algorithm and the 
algorithm can quit at that point. 

To compute the availability of a d-cube in the WAS, 
O(n x zd) time units are needed for the worst case. 
There are at most C; x 2n-d available d-cubes in the 
system. Thus the time complexity of the sequential al- 
gorithm of the WAS is O(nC2 x 2”). By using the sub- 
cube assignment scheme, each free processor handles 

d-cubes and executes the sequential algorithm 
as the host processor. Notice that if we omit the steps 
4(b)ii and 4(b)iii which do not occur very often, then 
we can use the subcube tree to further improve the 
efficiency as we did before. 

The final step is to collect the results from the free 
processors. We cannot follow the same approach as 
the first-fit algorithm where each free processor sends 
the result to the host processor. If the number of 
free processors is large, the host processor becomes 
a bottleneck since it needs to receive all the results 
from the free processors before it selects a d-cube. We 
develop the following parallel algorithm for selecting 
the best subcube while avoiding the bottleneck at the 
host processor. 

waiting list until a subcube is released. 

If there exists a free d-cube whose weight sum is 
2d x (n - d), then inform the host that the best 
d-cube is found, and then quit. 

Repeat the following from i = 1 to n, 
for processor j = 0 to 2” - 1 in parallel do 

(a) If processor j is free and a variable DONE 
is 0, choose a processor h, where h has a 
lowest address among 2’ processors, DONE 
bit of processor is 0, and x 2i 5 h < 
L q J  x 2j. 

(b) Send the result (a found d-cube) to processor 
h.  

(c) set the DONE to 1 if j # h. 

Send the result of the only free processor with 
DONE 0, to the host. 

I seauential I Darallel 
buddy I O( n)[13, 141 I O(d) 

sinele GC I I 

Table 2: The worst case time complexities of the se- 
quential and parallel algorithms for various hypercube 
allocation strategies, where complete 1 and 2 are the 
first and second parallel algorithms respectively devel- 
oped in the section of the complete subcube recogni- 
tion. 

Note that, in step 2 of the above parallel algorithm, 
only 2 processors out of 2’ processors in an i-cube have 
value 0 of DONE bit, and one of the higher address 
processors sends the result to the other processor. The 
communication for passing results in one i-cube is in- 
dependent of the communications in another i-cube. 
Therefore, the total time complexity of the parallel 
algorithm of WAS becomes O(nyg1 x 2 d ) .  

6 Concluding Remarks 
In this paper, we develop parallel algorithms for 

the tree type of hypercube allocation strategies, such 
as buddy, single GC, multiple GC, and T C  strategies. 
We also propose a modified single GC parallel algo- 
rithm that recognizes more subcubes than the single 
GC strategy with the same execution time. Two ef- 
ficient parallel algorithms are developed for the com- 
plete subcube recognition by utilizing all the free pro- 
cessors. Finally, we extend the parallel algorithms to 
the best-fit strategy WAS and achieve the same order 
of the complexity as the tree type first fit approaches. 
A summary of the complexities of the various parallel 
algorithms is given in Table 2. We can see that the 
complexities of the parallel algorithms are dramati- 
cally decreased. These results make the best fit ap- 
proach such as WAS more attractive since the best fit 
approach reduces the fragmentation of the processors 
in the system. 
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Appendix 
Parallel Algorithm of the Modified Single 

GC Strategy 
Standard binary reflected Gray Code: Gn = {g(O),  

g(1), .., g(2” - 1) ) Inverse standard binary reflected 
Gray Code: Fn = { f ( O ) ,  f ( l ) ,  .., f(2” - 1) } Each 
available processor Pa with address a = a,-l..ao 
has local variables R E S U L T ,  A, D, and Cube. The 
following algorithm is executed when a d-cube is re- 
quested. 

1 Cube = a,  A = 1, and D = 1 
2 t = g-’ a) and y = !-‘(a 

4 
5 
6 
7 send RESULT to Pg(z-l)  
8 
9 If P,(,+I) is available then 
10 receive A 
11 Cube[O] = ’*’ 
12 else A = 0 
13 
14 
15 send A to Pf(,-l) 
16 
17 
18 receive A 
19 Cube[n-  11 = ’*’ 
20 else A = 0 
21 
22 else 

3 For i = ‘0 to d - 1 in par .1 le1 do 
If D 2 n then quit 
If i is 0 then 

If x mod 2 is 1 then 

If x mod 2 is 0 then 

if A is 0 then R E S U L T  = 0 
If y mod 2 is 1 then 

If x mod 2 is 0 then 
If Pf(,+l) is available then 

if A is 0 then R E S U L T  = 0 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

if x is even then 
If D < n - 1 then 
If x - 2O < 0 then 

else if x - 2 x 2O < 0 then 

else if x - 3 x 2O < 0 then 

else if x - 4 x 2O < 0 then 

U = g ( z + 3  x 2O), v = g(t+ 2O), and D = D +  1 

U = g ( t  - Z D ) ,  v = g(z + zD), and D = D + 2 

U = g ( t  - 2*), v = g(t + 2O) ,  and D = D + 1 

U = g ( t  - Z D ) ,  v = g ( t  - 3 x 2O), and D = D + 2 
else 
If x - 2O < 0 then 

else U = g(x  - zD> 
v = U and D = D +  1 

send RESULT to P,, 
if P, is available then 
receive A 
Cube[D - 11 = ’*’ 

else A = 0 
if A = 0 then RESULT = 0 

If y - 2* < 0 then 

else if y - 2 x 2O < 0 then 

else if y - 3 x 2O < 0 then 

else if y - 4 x 2O < 0 then 

send RESULT to  Pu 
if P, is available then 

U = g ( t  + 2 D )  

if y is even then 

U = f(y + 3 x 2O), v = f ( y  +2O), and D = D +  1 

U = f ( y  - 2O), v = f (y  + 2O), and D = D + 2 

U = f (y  - 2O), v = f(y + 2 D ) ,  and D = D + 1 

U = f(y - 2O), v = f(y - 3 x 2 D ) ,  and D = D + 2 

receive A 
Cube[n - 1 - D - 11 = ’*’ 

else A = 0 
58 end for 
59 if RESULT is 1 then sent the found d-cube stored 

in variable Cube to the host processor 
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