
Parallel Algorithms for Hypercube Allocation*

Ye imkuan Chang and Laxmi N . Bhuyan
Department of Computer Science, Texas A&M University

College Station, Texas 77843-3112

Abstract - Parallel algorithms of the hypercube allo-
cation strategies are considered in this paper. Although
the sequential algorithms of various hypercube alloca-
tion strategies are easier to implement, their worst
case time complexities exponentially increase as the
dimension of the hypercube increases. We show that
the free processors can be utilized t o perform the allo-
cation jobs in parallel to improve the. eficiency of the
hypercube allocation algorithms. A modified parallel
algorithm for the single GC strategy is proposed and
is shown to be able to recognize more subcubes than the
single GC strategy by using the binary reflected Gray
code and inverse binary reflected Gray code, without
increasing the execution time. Two algorithms for a
complete subcube recognition system are also presented
and shown t o be more efficient and attractive than the
sequential one currently used in the hypercube multi-
processor.

1 Introduction
The hypercube structure has become a widely used

architecture in the design of distributed-memory mul-
tiprocessor system. Its popularity stems from the
compactness of the nodes in the system which results
in a logarithmically-growing diameter and degree of
the processor nodes. A hypercube with 2" processors
can be topologically represented as an n-dimensional
cube in which a processor is located on each one of the
2" vertices of the cube. Each of the 2" processors is
addressed by a distinct n-bit vector and two processors
are connected by a link if and only if their addresses
differ in exactly one bit. Subcubes of an n-cube system
are denoted by ternary strings in (0, 1, *}, where * is
the Don't Care bits which can be replaced by either
0's or 1's. For example, O*O* is a subcube in a 4-cube
system which contains 4 processors with addresses 0,
1, 4, and 5.

Numerous research efforts on the performance eval-
uation, fault tolerance, and embedclability of hyper-
cubes [l, 21 have been reported. Several commercial
hypercube multiprocessors have been built, such as In-
tel iPSC [3], and nCUBE[4]. When a task or an appli-
cation program arrives at a hypercube multiprocessor,
the required number of processors is assigned to the
task by the host processor. Upon the completion of
the task, the processors used by the task are released
or deallocated. The processor allocation involves two
steps. The first step is to determine the number of pro-

*This research has been partly supported by NSF grant MIP-
9002353

cessors that should be allocated for executing an in-
coming task. It is assumed that a complete subcube is
required by the incoming task. Otherwise, a subcube
of dimension d is allocated, where 2d-1 < p 5 2d and
p is the number of requested processors. The second
step in the processor allocation is to locate an appro-
priate subcube and assign it to the incoming task such
that the system utilization is maximized and the sys-
tem fragmentation is minimized. As a result, the de-
lay for an incoming task to be scheduled is minimized.
In short, a good allocation scheme keeps the dimen-
sion of the free subcubes as large as possible while the
processors are allocated and deallocated. The current
hypercube multiprocessors allocate tasks based on a
simple buddy strategy, as explained later [3, 41.

A few subcube allocation policies have been pro-
posed in the literature. These policies concentrate on
developing a method or a data structure that helps the
allocation procedure to quickly find a first-fit avail-
able subcube of the requested size and assign it to
the request. The performance metrics used in com-
parisons of different allocation algorithms are usually
the number of recognizable subcubes and allocation
time efficiency. The number of recognizable subcubes
is closely related to the processor utilizations. One
category of the allocation policies, called bit-mapping
schemes, uses tree structures to facilitate the proces-
sor allocation. Buddy, gray code(GC) and multiple-
GC [5], modified buddy [6], and tree collapsing(TC) [7]
strategies belong to this category. Another category of
the allocation policies, called list schemes, maintains
n+l lists in which the ith list contains the available
i-dimensional subcubes. The elements in the lists are
mutually disjoint. Free list strategy[8] and maximal
set of subcubes(MSS)[S] are in this category. There
are also many other variations of the allocation poli-
cies that use graphs to quickly find out the available
subcubes. The examples of them are the MSS-based
algorithm using consensus graphs in [9] and the prime
cube-based algorithm using prime cube(PC) graphs in
[lo]. Another approach is the weight allocation strat-
egy(WAS) [ll] which uses the weights of the proces-
sors to select the best subcube in order to reduce the
fragmentation of the processors. The weight of a pro-
cessor is defined as the number of its neighbors which
are busy.

In the sequential approach, the host processor is
responsible for all the computations of the availabil-
ity of subcubes. Since the time complexities of the
proposed approaches are high, these papers [5, 7, 81

105
1063-713393 $3.00 0 1993 lEEE

briefly discuss about the parallel implementation of
their strategies. One parallel approach commonly em-
ployed in [5, 7, 81 is to distribute the computations
to some predetermined processors. The results from
these predetermined processors are then collected by
the host processor to make the final decision. In [5],
the number of predetermined processors used by the
multiple-GC strategy for a complete subcube recogni-
tion is C:+. The T C strategy in [7] uses C: proces-
sors to achieve the complete subcube recognition when
a subcube of size d is requested. The free list strategy
employs n + 1 processors, each of which maintains the
list of one dimension. Two drawbacks of these paral-
lel algorithms are as follows. First, if the processors
are initially selected and dedicated solely to executing
the allocation program, then the number of processors
available for executing the incoming tasks is reduced,
leading to degraded system performance. The second
drawback is that the worse case time complexity is
still of the order of 2'g which exponentially increases
as the dimension of the system increases.

Another parallel approach used in [12] utilizes the
free processors to perform the allocation jobs. Only
tree type allocation strategies were considered. We
adopt a similar approach but parallelize all the exist-
ing hypercube allocation strategies. Also the worst
case time complexity of our best parallel algorithm is

which is much better than C j x d obtained
in [12]. We intend to distribute the computations exe-
cuted on the host processor in the sequential approach
to the free processors by keeping the free processors
busy and responsible all the time. This approach keeps
the system more utilized, improves the execution time
of the allocation and reduces the waiting time of the
incoming tasks.

In this paper, we first parallelize the buddy, single
GC, multiple-GC, and T C strategies. A modified par-
allel algorithm for the single GC strategy is proposed
and is shown to be able to recognize more subcubes
than the single GC strategy by using the binary re-
flected Gray code and inverse binary reflected Gray
code, without increasing the execution time. Two al-
gorithms of a complete subcube recognition system
are also presented and shown to be more efficient and
attractive than the sequential one currently used in
the hypercube multiprocessor. The rest of the paper
is organized as follows. The parallel algorithms of the
buddy and GC strategies are given in Section 2 and 3,
respectively. Efficient algorithms of the complete sub-
cube recognition system are present.ed in section 4.
A selection algorithm suited for the best-fit strategy
such as WAS is given in section 5. Finally, concluding
remarks are presented in Section 6.

2 The Buddy Strategy
The buddy strategy is originated from the mem-

ory allocation scheme. This is the simplest among all
the strategies and is applied to commercial multipro-
cessors, such as nCUBE[4]. It has been shown that
the buddy strategy is statically optimal if the release
of processors is not considered. In other words, the
buddy strategy fails to grant a request only if there is

no sufficient number of available processors to satisfy
the request. However, the buddy strategy is no longer
optimal if the release of the processors is considered
when a request is completed.

This strategy is easily explained by a binary tree in
which the leaf nodes are labeled as 0 to 2fl-1 from the
left to the right. The labels of the leaf nodes repre-
sent the addresses of processors in the system. In the
sequential algorithm, when a d-cube is requested the
system checks the availability of the processors corre-
sponding to the leaf nodes of the subtrees rooted at
the (n - d)th level of the binary tree. Formally, the
system checks the availability of 2d processors whose
addresses range from 2d x i to 2d x (i + 1) - 1, where
i = 0 to 2fl-d - 1. I t can be easily observed that the
number of d-cubes recognized by the buddy strategy
is n-d

%'arallel A1 orithm of the Buddy Strategy
To parallelize h e buddy strategy, we use the the
same divide-and-conquer technique usually used in the
tree structure. Each available rocessor with address
an-l..uO has local variables RJSULT and ACK and
executes the following algorithm when a d-cube is re-
quested.

1 ACK = 0 , RESULT = 1
2 for i = 0 to d - 1 in parallel do
3

4 receive ACK
5 else ACK = 0
6
7

8
9 end for
10if RESULT is 1 then send an-1 .. ad** ...* to

if a; is 0 and processor u,-l..a~+llO..O
is available then

if ACK is 0 then RESULT = 0
if ai is 1 and processor a,-l..aj+100..0

is available then
send RESULT to processor an-l..uj+lOO..O

the host processor

Having developed the above algorithm, we propose be-
low a way by which the parallel algorithm can be im-
plemented. The executable image of the subprogram
of the parallel algorithm must be preloaded at each
processor's memory. As a task arrives, the associ-
ated information such as the requested subcube size
d is loaded to each processor, from the host proces-
sor. This loading process can be done in a constant
time since the host processor is connected to every
processor in the system as implemented in nCUBE
multiprocessor [4]. Then the parallel algorithm is ex-
ecuted.

At the end of algorithm, the processors
an-l..adOO..O with a value 1 in variable ACE(discov-
ers a free d-cube an-1 ..ad**...* and sends the address
of the d-cube to the host processor. The host proces-
sor then selects the first d-cube it receives, assigns the
d-cube to the incoming task and disregards the other
d-cubes arriving at the host processor. Obviously, this
algorithm takes d time units, each of which is the time
processors take for sending and receiving results from
other processors. The sequential buddy strategy takes
U(2") time units for the worst case.

Notice that the loading process described here are
applicable to all the parallel algorithms given in this

106

paper. The subcube selection method adopted by the
host processor is only applicable to the first-fit ap-
proaches such as the buddy and GC strategies. For
the best-fit approach a different selection method is
needed qs described later for the WAS.
Extension of the buddy strategy
The tree collapsing(TC) strategy [7] is an extension
of the buddy strategy that has a complete subcube
recognition ability. The T C strategy tries to find
a subcube according to the buddy strategy. If un-
successful, it will generate another binary tree with
different labeling which can be generated by the col-
lapsing tree generation method developed in [7]. Ba-
sically, each binary tree contains 2n-d d-cubes each
of which has d *'s at d fixed bit positions and
0's or 1's at the other n - d bit positions in its
ternary representation. For example, O*O*, 0*1*,
1*0*, and 1*1* are the 2-cubes recognized by the
T C strategy based on the binary tree labeled with
(0,1,4,5,2,3,6,7,8,9,12,13,10,11,14,15). Hence, at most
C: binary trees are needed to allocate a d-cube. As
stated in the introduction, the distributed algorithm
developed for T C strategy in [7] uses C: processors,
each of which computes the availability of subcubes
recognized by its corresponding binary tree. Each in-
volved processor sends the result back to the host pro-
cessor, indicating whether a subcube of the requested
size is available. The worst case time complexity is

To make the T C strategy more efficient, we paral-
lelize the T C strategy by using the parallel algorithm
of the buddy strategy C; times with C f binary trees.
Thus the time complexity of the parallel algorithm of
the T C strategy becomes O(d x Cf) which is polyno-
mial and more efficient than the distributed algorithm
developed in [7].

3 The Gray Code Strategy
The single GC strategy [5] is similar to the buddy

strategy except for the labeling of the leaf nodes. The
leaf nodes are labeled by a sequence of binary num-
bers where any two consecutive numbers have only one
different bit out of the n bits, based on the binary re-
flected Gray Code(BRGC). Let gn denote the binary
reflected Gray Code mapped from (0, .., 2"-1) to n-bit
binary strings and Gn = {gn(O), .., gn(2" - 1)). The
subscript n will be omitted later if there is no ambigu-
ity. The leaf nodes are labeled as gn(0) to gn(2" - 1)
from the left to the right. G, is obtained by the fol-
lowing recursive expression with parameters {PI, pa,
.. Pn 1,

O(2").

GI = {0,1}
Gn = {Gipi,(G$-1)1'rk},2 5 IC 5 n. (1)

Here ?-k is the partial rank of pk in {PI, pz, .. pk
}. G;? is the set of k-bit binary strings which are
constructed by inserting a bit with value (0 or 1) into
the position between Tkth bit and (?-k - l) lh bit of the
elements in Gk-1, assuming there exist two dummy

IRBOC 40) qz) 4Q @l qio) pia 1114)
loa, Do00 0100 1100 Il l0 OLIO 0010 1010 1011 0011 0111 1111 1101 0101 mol 1001

Figure 1: The allocation process of the modified single
GC strategy in a 4-cube system.

bits, rkth and Oth bits. G$-l is the sequence of binary
strings obtained by reversing the order of the strings
in Gk-1. The standard GC is the Gn with parameters
(1, 2, .., n}. An example of the standard BRGC Gq
of a 4-cube system is shown in Fig.1.

The sequential allocation algorithm of the single
GC strategy for allocating a d-cube is to check the
availability of 2d processors rooted at two consecu-
tive nodes of the (n -d)th level of the GC binary
tree. Formally, the system checks the availability of
2d processors whose addresses range from 2d-1 x i
to (adb1 x (i + 2) - 1) mod 2d-1, where i = 0 to
2n-d-1 - 1. It can also be easily observed that the
number of the recognizable subcubes is double com-
pared to the buddy strategy. The time complexity of
the single GC strategy, however is O(2"). Our par-
allel version of the single GC strategy spends exactly
the same time, d time units, as the buddy strategy to
compute the availability of every subcube recognized
by the single GC strategy. The algorithm is illustrated

f%%~sAl orithm of the Single GC Strategy
G = {g(O), g??, .., g(2" - 1) } Each available proces-
sor Pa with a dress Q = an-l..ao has local variables
RESULT and ACK and executes the following algo-
rithm when a d-cube is requested.
1 ACK = 0, RESULT = 1
2 for i = 0 to d - 1 in parallel do
3 k = g((g- ' (cr) + 2') mod 2")
4 1 = g((g-'(cr) - Zi) mod 2")
5 if Pi is available then
6 send RESULT to Pi
7 if P k is available then
8 receive ACK
9 else ACK = 0
10 if ACK is 0 then RESULT = 0
11 End for
12 if RESULT is 1 then send the found d-cube

described in the text to the host processor

At the end of the parallel single GC algorithm, the

107

processor g - ' (a) = bn-1..bd-100..0 with a value 1
in variable RESULT discovers a free d-cube of 2d
processors whose addresses range from g(2d-' x i) to
g((2d-1 x (i+2)-1) mod 2d- ') , where i = b,,-l..bd-l.
The Modified Single GC Strategy

While developing the parallel a1 orithms for the
buddy and single GC strategies, we &cover that not
all the processors are responsible for the processor al-
location all the time. For example, after the first iter-
ation of the algorithm, at most one half of the proces-
sors labeled with g (i) , where i is odd, will become idle
since they do not send results to or receive results from
other processors. Therefore we develop a modified al-
gorithm for the single GC strategy to be able to rec-
ognize more subcubes than the single GC strategy by
keeping all the available processors busy and respon-
sible for the processor allocation all the time. In addi-
tion to the binary reflected Gray code(BRGC) G, =
{g(O) , g (l) , .., g(2" - 1) }, we also map the processors
with the inverse binary reflected Gray code(1BRGC)
F,, = {f(O), f (l) , .., f (2 , - 1) }. IBRGC F,, listed
below is obtained from a similar recursive expression
as BRGC with an inverse parameters set { p , , .., p l } .

where the definitions of Tk and F * are the same as
BRGC. An example of the standard IBRGC F4 of a
4-cube system is shown in Fig.1.

Notice that if a processor Q has an even value of
g - l (a) then it will have an odd value of f - l (a) and
vice versa. In the first step of the parallel algorithm of
the modified single GC strategy, processors g (z) and
f(y) send results to processors g (z - 1) and f (y - l) ,
respectively, if z and y are odd. Processor g (z) and
f(y) expect to receive results from processors g (z + 1)
and f (y+ l) , respectively if t and y are even. Thus we
can easily divide the processors into two sets of pro-

f (2 " - l) }. After the first step of the algorithm, these
two sets of processors perform the processor allocation
independently. In the following iterations, each pro-
cessor sends result to its child processor and receives
result from its parent processor in a similar way.

The relationship of the processors is shown in Fig.2
in which four processors are related and the child pro-
cessors are pointed to by directed arrows from their
parent processors and vice versa. The variable D of
a free processor, shown in Fig.1, is the dimension in-
dex which is the index of the leftmost Don't Care bit
in the ternary representation of the subcube plus one
and is used to compute the addresses of its parent and
the child processors. To be more clear, Fig.1 shows
that processors g(O), g (2) , g (4) , and g (6) are related
to each other since D is 1 at the end of the first iter-
ation of the parallel algorithm. Processor g (0) is the
parent of the processor g (6) and therefore will send
a result to the processor g (6) . Processor g (0) is the
child of the processor g (2) and will expect to receive
a result from processor g (2) .

cessors, {g(O), 9 (2) , ..> 9(2"- l> 1 and {f(O>, f (% ..,

f 1

Figure 2: The child and parent relationship of the
processors.

oooo* * o o o o O * * * * * * * * o

0 0 0 * * * * o o o * O * * * * * * o *

o o * o * * o * o o * * O * *

o o * * * * * * o o * * * O *

* o * o *
Figure 3: The subcubes of a 5-cube system recognized
by the modified single GC strategy.

Fig.3 shows the subcubes that can be recognized by
the parallel algorithm of the modified single GC strat-
egy in a 5-cube system. For the processors labeled
with RBGC, we can observe that the subcubes recog-
nized by the parallel algorithm of the modified single
GC strategy are constructed from the 1-cubes each
of whose ternary representations has a Don't-Care bit
at the Ot" bit position. The 2-cubes recognized by
the algorithm are constructed by assigning the 1'' bit
with * and also assigning 3rd bit with *. In general,
the d-cubes are based on the (d - 1)-cubes and are
constructed by assigning the bit next to the leftmost
Don't Care bit of the ternary representation of the (d-
1)-cubes to * and also assigning the bit which is two
bits away from the leftmost Don't Care bit to *.

The parallel algorithm is shown in the Appendix.
The variable C u b e in the algorithm shown in the Ap-
pendix stores the subcube discovered at the current
iteration. The variable D is an index of the left-
most(rightmost) Don't Care bit in variable C u b e plus
1 for BRGC(1BRGC). At the end of the algorithm, the
processor with value 1 in variable RESULT discovers
a free subcube stored in variable C u b e . It can be easily
observed that the modified single GC strategy takes
exactly the same time, d time units, as the buddy and
the single GC strategy, but recognizes more subcubes.
Table 1 shows the number of subcubes that an n-cube
system has and the number of the subcubes that can
be recognized by the parallel algorithms of the com-
plete recognition approaches, modified GC strategy,
and single GC strategy.
Multiple GC strategy
In the multiple-GC strategy, Cr,,, gray codes are used
for a complete subcube recognition [5]. For each in-
coming task with requested size d , the system follows

108

1 n x 2 " - l 2" 2"
0 2" 2" 2"

Table 1: Numbers of the subcubes recognized by
a complete recognition(CR) system, the single GC
S GC)strategy and the modified single GC (MS I C)strategy.

the allocation procedure of the single GC strategy to
find the first available d-cube based on the binary tree
with one gray code. If there is no free d-cube in the
tree, then the second binary tree is generated with an-
other gray code and the search is continued until an
available d-cube is found or all the Ci+, gray codes are
exploited. Therefore, we can have a parallel algorithm
for the multiple G C strategy with a time complexity
of O(d x Cy2,) by using the same technique as the
parallel algorithm of the TC strategy. Notice that al-
though the number of the subcubes recognized by the
single GC strategy is double that of the buddy strat-
egy, the time complexity of the multiple GC strategy
is worse than the T C strategy. The reason is that
the subcubes checked in one GC may be redundantly
checked in another GC of the multiple GC strategy.

4 Complete Subcube Recognition
In order to achieve a complete subcube recognition,

a processor allocation algorithm must have the ability
to check all the possible subcubes in the system. There
are C: x 2"-d d-cubes in an n-cube system. Thus a
sequential algorithm with the complete subcube recog-
nition ability proceeds by checking the availability of
each of the 2" processors in each of the C: x 2n-d
d-cubes, which gives us a O(C: x 2") time complex-
ity. In order to improve the efficiency of the allocation
algorithm, we can have a parallel algorithm with time
complexity O(C: x d) that achieves a complete sub-
cube recognition by employing the buddy strategy C;
times with C: different buddy trees, i.e. the parallel
algorithm of the T C strategy.

In the following we present two parallel algorithms
that achieve a complete subcube recognition and are
more efficient than the parallel T C algorithm. The
basic idea is to uniformly distribute the computations
that are supposed to be executed in the host processor
in the sequential algorithm to all the free processors.
The algorithms involve two phases. The first phase,
the subcube assignment phase, assigns the subcubes
to their corresponding leader processors. The leader
of a subcube is one of the processors in the subcube
determined by the subcube assignment scheme. As
we know, there are C: x 2"-d d-cubes in an n-cube

system, the subcube assignment scheme can distribute
the C; x 2"-d d-cubes uniformly to the 2" processors
in the system. Thus the number of the d-cubes pro-
cessed in a processor is less than or equal to Tc' t,n-dl
= @I. Notice that, according to the definition of the
leader of a subcube, if the leader is busy then the sub-
cube must not be available. Thus only the subcubes
that are computed by the free processors need to be
considered in the processor allocation procedure. The
subcube assignment scheme is given as follows.

1. Initialize the variable counter[a] to 0 for each pro-
cessor cr.

2. For a processor with address a = (an-1, . . ., ao),
generate can d-cubes, (O n - 1 , . . ., z d - 1 , . . ., 20,

. .., ao) that contain processor a, where zi are
DON'T CARE symbols, and 0 5 i < d. Sort
these C: d-cubes by their index of zi.

3. For the kth d-cube in the sorted sequence of the
C: d-cubes, where k is from 0 to C: - 1 and y = k
mod 2d = (yd-1, . . ., yo), zi with yi, 0 5 i 5 d - 1 ,
and calculate p = (U " - 1 , . . ., yd-1, . . ., yo, . . .,
.O> .

4. If the counterp] is not larger than [%I, then its-
sign the d-cube, (~ ~ - 1 , . . ., 2 d - 1 , . . ., 20, . . ., ao),
to the processor p. Compute the complementary
d-cube by complementing all the bits of (~"-1,
. . ., xd-1, . . ., 20, . . ., ao) except DON'T CARE
bits, and assign this complementary d-cube to
processor Ti = (=,= ,..., q,Q.

5 . else, set k = k + 1, and y = k mod 2d = (Yd-1,
. . ., yo) and Calculate (an-1, . . ., yd-1 , . . ., yo, . . .,
0 0) .

6. Goto step 3 until all the C; x 2"-d d-cubes are

Notice that the subcube assignments according to
the above scheme can be determined off-line. and in-
corporated in the processor allocation algorithm for
each free processor. The entire program consists of
the host and free processor subprograms. Whenever
a subcube is requested, the host processor decides the
cube size, i.e. d, and loads the free processors with
d. The subprogram in each free processor then follows
the same procedure as the sequential algorithm and
finds a free d-cube. After the subprogram is finished
on each free processor, the result is sent to the host
processor. Then the host processor picks the first re-
sult(a free subcube) it receives and allocates it to the
incoming task, and disregards the other results arriv-
ing at the host processor. Therefore, this gives us a
time complexity of O(x z d) N O(C;) which is
better than the parallel T C algorithm developed in
secti-on 2.

Since the above algorithm involves a lot of redun-
dant computations among the free processors, we can

assigned to a processor.

109

Figure 4: An example of modified single GC strategy
in a Ccube system.

use the divide-and-conquer technique to further im-
prove the efficiency. This can be accomplished by us-
ing the partial results of lower dimension subcubes to
compute the availability of the higher dimension sub-
cubes. The first phase is the same as the above algo-
rithm. In the second phase, we use the subcube tree
to facilitate the development of the parallel algorithm.
Fig.4 shows the subcube tree of a 4-cube system for
allocating a 3-cube. Each k-cube (1 <_ k 5 d) that
need to be computed is decomposed into two (k - 1)-
cubes at the position of the leftmost Don't Care bit
of its ternary representation. For example, the 3-cube
O*** is decomposed into two 2-cubes, OO** and 01**
in the subcube tree shown in Fig.4. From the de-
composition procedure, CzIi x 2n-d+k (d - k)-cubes
need to be computed, where 1 5 k 5 d. Each k-cube
receives two results of (k - 1)-cubes from its child pro-
cessors in the subcube tree. Since a leader processor
is responsible for a t most r+l d-cubes, the time com-
plexity of the parallel algorithm is easily obtained to

In the above complexity analysis, we assume that
the time for passing results between processors is in-
dependent of the distance between processors. It is
always true in the modern hypercube multiprocessors
such as nCUBE because of the wormhole routing tech-
nique [4]. We also ignore the message contention in
the system since the messages passed for the alloca-
tion jobs are small and are less likely to interfere with
the messages passed in the subcubes that have already
been allocated.

C"

be 2 x xt=l = o(c;=~ @I).

5 The Best-Fit Strategies
As we should see, the main tasks of the parallel hy-

percubes allocation algorithms developed in previous
sections are as follows. Each free processor searches for
an available subcube of the requested size among some
predetermined subcubes and sends the found subcube
to the host processor. Then the host processor se-
lects the first subcube it receives and assigns the sub-
cube to the incoming task. Basically, these algorithms

are first-fit approaches. In this section, we extend
the technique used in previous sections to the best fit
approach, the weight allocation strategy(WAS) [ll].
Each free processor finds the best subcube among the
predetermined d-cubes using WAS. Then the
global best d-cube is selected by the selection proce-
dure which will be described later. We do not attempt
to parallelize the other best fit approaches such as the
list type strategies, the MSS-based [9] and free list [SI
strategies since the list structure is not easy to par-
allelize. In the following, we first briefly describe the
WAS and then develop an efficient method to select
the best cube for ,allocation.
Weight Allocation Strategy

WAS is a hypercube allocation strategy developed
in [ll] that is based on the weight sums of the sub-
cubes in the system. The weight of a free processor is
the number of its neighbors that are already allocated
to tasks. The weight sum of a free subcube is defined
as the sum of the weights of the processors in the sub-
cube. WAS selects a free subcube whose weight sum
is maximal among all the available subcubes of the
requested size. The sequential algorithm of the WAS,
executed on the host processor, is given as follows.

1. Set d = IIjl, where IIj (is the dimension of the
subcube requested by an incoming task, I j .

2. Compute the weight of each free processor.

3. Determine the availability of a d-cube by using its

4. If there are available d-cubes, compute the weight

(a) If there is an available d-cube whose weight

(b) Find the d-cube whose weight sum is maxi-

i. If weight sums of two d-cubes, A and B,
are equal, compute weight vectors, a' =
(U,, ..., UO) and b' = (b , , ..., bo) for A
and B, where ai and bi are number of
processors wh_ose weight is i, and 0 <_
i < n. If a' > b , select B. If a' < a', select
A:

ii. If a' = b , compute the sum wa of weights
of free processors after temporarily set-
ting the corresponding track bits of A to
ones. Similarly compute wb. If wa < wb,
then select A. Else, if W a > wb select B.

iii. If Wa = tub, compute a weight cardinal-
ity vector (c,,, ..., CO) after temporar-
ily setting the corresponding track bits
of A to ones, where ci is the number
of free processors whose weights are i .
Similarly, compute the weight cardinal-
ity vector (&, ..., do) for B. If (&, ...,
dq) < (c,,, ..., CO) then select B, other-
wise select A.

corresponding track bits.

sums of all the available d-cubes.

sum is (n - d) x 2d then select it and quit.

mum among the available d-cubes.

*

110

5. Set the track bits corresponding to the selected
d-cube in step 3 to 1’s and assign the d-cube to
Ij .

6. If there is no available d-cube, put the task Ij to

Step 4 is the major part of the allocation algorithm.
It first computes the weight sums of all the available
d-cubes. Then it selects the d-cube which has the max-
imum value of weight sum among all the available d-
cubes. Since it is possible that there are more than
one d-cubes with the same weight sum which is maxi-
mum, further comparisons are performed as stated in
step 4(b). However, according to the computer sim-
ulation in [ll], these cases are rare. The step 4(a)
is a special case of the algorithm. It finds a d-cube
with weight sum (n - d) x 2d which is maximal weight
sum in any situation. In other words, no other d-cube
can have weight sum greater than (n - d) x 2d. Thus
it is not necessary to continue the algorithm and the
algorithm can quit at that point.

To compute the availability of a d-cube in the WAS,
O(n x zd) time units are needed for the worst case.
There are at most C; x 2n-d available d-cubes in the
system. Thus the time complexity of the sequential al-
gorithm of the WAS is O(nC2 x 2”). By using the sub-
cube assignment scheme, each free processor handles

d-cubes and executes the sequential algorithm
as the host processor. Notice that if we omit the steps
4(b)ii and 4(b)iii which do not occur very often, then
we can use the subcube tree to further improve the
efficiency as we did before.

The final step is to collect the results from the free
processors. We cannot follow the same approach as
the first-fit algorithm where each free processor sends
the result to the host processor. If the number of
free processors is large, the host processor becomes
a bottleneck since it needs to receive all the results
from the free processors before it selects a d-cube. We
develop the following parallel algorithm for selecting
the best subcube while avoiding the bottleneck at the
host processor.

waiting list until a subcube is released.

If there exists a free d-cube whose weight sum is
2d x (n - d), then inform the host that the best
d-cube is found, and then quit.

Repeat the following from i = 1 to n,
for processor j = 0 to 2” - 1 in parallel do

(a) If processor j is free and a variable DONE
is 0, choose a processor h, where h has a
lowest address among 2’ processors, DONE
bit of processor is 0, and x 2i 5 h <
L q J x 2j.

(b) Send the result (a found d-cube) to processor
h.

(c) set the DONE to 1 if j # h.

Send the result of the only free processor with
DONE 0, to the host.

I seauential I Darallel
buddy I O(n)[13, 141 I O(d)

sinele GC I I

Table 2: The worst case time complexities of the se-
quential and parallel algorithms for various hypercube
allocation strategies, where complete 1 and 2 are the
first and second parallel algorithms respectively devel-
oped in the section of the complete subcube recogni-
tion.

Note that, in step 2 of the above parallel algorithm,
only 2 processors out of 2’ processors in an i-cube have
value 0 of DONE bit, and one of the higher address
processors sends the result to the other processor. The
communication for passing results in one i-cube is in-
dependent of the communications in another i-cube.
Therefore, the total time complexity of the parallel
algorithm of WAS becomes O(nyg1 x 2 d) .

6 Concluding Remarks
In this paper, we develop parallel algorithms for

the tree type of hypercube allocation strategies, such
as buddy, single GC, multiple GC, and T C strategies.
We also propose a modified single GC parallel algo-
rithm that recognizes more subcubes than the single
GC strategy with the same execution time. Two ef-
ficient parallel algorithms are developed for the com-
plete subcube recognition by utilizing all the free pro-
cessors. Finally, we extend the parallel algorithms to
the best-fit strategy WAS and achieve the same order
of the complexity as the tree type first fit approaches.
A summary of the complexities of the various parallel
algorithms is given in Table 2. We can see that the
complexities of the parallel algorithms are dramati-
cally decreased. These results make the best fit ap-
proach such as WAS more attractive since the best fit
approach reduces the fragmentation of the processors
in the system.

References
L. Bhuyan and D. Agrawal, “Generalized Hyper-
cube and Hyperbus Structures for a Computer
Networks,” IEEE Transactions on Computers,
pp. 323-333, Apr 1984.

D. A. Reed and D. C. Grunwald, “The Per-
formance of Multicomputer Interconnection Net-
works,” IEEE Computer, pp. 63-73, June 1987.

J . Rattner, “Concurrent Processing: A New Di-
rection in Scientific Computing,” AFIPS Confer-
ence Proc., pp. 157-166, vo1.54 1985.

111

~ 4 1

7

nCUBE Corporation, nCUBE 2 Processor Man-
ual, nCUBE Corporation, Dec. 1990.

M. S. Chen and K. G. Shin, “Processor Alloca-
tion in an N-Cube Multiprocessor Using Gray
Codes,” IEEE Transactions on Computers, pp.
1396-1407, Dec. 1987.

A. Al-Dhelaan and B. Bose, “A New Strategy for
Processors Allocation in an N-Cube Multiproces-
sor,” Proc. Int ’I Pheonix conference On Comput-
ers communications, pp. 114-118, 1989.

P. J . Chuang and N. F. Tzeng, “Dynamic proces-
sor Allocation in hypercube Computers,” Proc.
Int ’I Conference on Computer Architectures, pp.
40-49, 1990.

J . Kim, C. R. Das, and W. Lin, “A Top-down
processor Allocation scheme for hypercube Com-
puters,” IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 20-30, January 1991.

S. Dutt and J . P. Hayes, “Subcube Allocation in
Hypercube Computers,” IEEE Transactions on
Compuiers, pp. 341-351, March 1991.

H. Wang and Q. Yang, “Prime Cube Graph Ap-
proach for Processor Allocation in Hypercube
Multiprocessors,” Proc. Int ’I Conference on Par-
allel Processing, pp. 1-25-32, 1991.

Y. Chang and L. N. Bhuyan, “A New Approach
to Hypercube Allocation using Weights,” Tech-
nical Report 93-004, Computer Science Depart-
ment, Texas A&M University, 1993.

M. Livingston and Q. F. Stout, “Parallel Allo-
cation Algorithms for Hypercubes and Meshes,”
Fourth Hypercube Concurrent Computers and
Applications, pp. 59-66, 1989.

D. E. Knuth, The Art of Computer Programming,
Addison-Wesley Publishing Company, 1978.

D. D. Sharma and D. Pradhan, “A Novel Ap-
proach for Subcube Allocation in Hypercube
Multiprocessors,” In International Symposium on
Parallel and Distributed Processing, pp. 336-345,
Dec. 1992.

Appendix
Parallel Algorithm of the Modified Single

GC Strategy
Standard binary reflected Gray Code: Gn = {g(O),

g(1), .., g(2” - 1)) Inverse standard binary reflected
Gray Code: Fn = { f (O) , f (l) , .., f(2” - 1) } Each
available processor Pa with address a = a,-l..ao
has local variables R E S U L T , A, D, and Cube. The
following algorithm is executed when a d-cube is re-
quested.

1 Cube = a, A = 1, and D = 1
2 t = g-’ a) and y = !-‘(a

4
5
6
7 send RESULT to Pg(z-l)
8
9 If P,(,+I) is available then
10 receive A
11 Cube[O] = ’*’
12 else A = 0
13
14
15 send A to Pf(,-l)
16
17
18 receive A
19 Cube[n- 11 = ’*’
20 else A = 0
21
22 else

3 For i = ‘0 to d - 1 in par .1 le1 do
If D 2 n then quit
If i is 0 then

If x mod 2 is 1 then

If x mod 2 is 0 then

if A is 0 then R E S U L T = 0
If y mod 2 is 1 then

If x mod 2 is 0 then
If Pf(,+l) is available then

if A is 0 then R E S U L T = 0

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

if x is even then
If D < n - 1 then
If x - 2O < 0 then

else if x - 2 x 2O < 0 then

else if x - 3 x 2O < 0 then

else if x - 4 x 2O < 0 then

U = g (z + 3 x 2O), v = g(t+ 2O), and D = D + 1

U = g (t - Z D) , v = g(z + zD), and D = D + 2

U = g (t - 2*), v = g(t + 2O) , and D = D + 1

U = g (t - Z D) , v = g (t - 3 x 2O), and D = D + 2
else
If x - 2O < 0 then

else U = g(x - zD>
v = U and D = D + 1

send RESULT to P,,
if P, is available then
receive A
Cube[D - 11 = ’*’

else A = 0
if A = 0 then RESULT = 0

If y - 2* < 0 then

else if y - 2 x 2O < 0 then

else if y - 3 x 2O < 0 then

else if y - 4 x 2O < 0 then

send RESULT to Pu
if P, is available then

U = g (t + 2 D)

if y is even then

U = f(y + 3 x 2O), v = f (y +2O), and D = D + 1

U = f (y - 2O), v = f (y + 2O), and D = D + 2

U = f (y - 2O), v = f(y + 2 D) , and D = D + 1

U = f(y - 2O), v = f(y - 3 x 2 D) , and D = D + 2

receive A
Cube[n - 1 - D - 11 = ’*’

else A = 0
58 end for
59 if RESULT is 1 then sent the found d-cube stored

in variable Cube to the host processor

112

